Solution Bank #### **Exercise 1B** For $f(x) = \cosh x$, $f(2x) = \cosh 2x$, a horizontal sketch of scale factor $\frac{1}{2}$. For $f(x) = \cosh x$, $2f(x) = 2 \cosh x$, a vertical stretch of scale factor 2. #### 2 a ## Solution Bank **2 b** The curves $y = \operatorname{sech} x$ and $y = \sinh x$ meet when: $$\frac{2}{e^{x} + e^{-x}} = \frac{e^{x} - e^{-x}}{2}$$ $$\frac{2e^{x}}{e^{2x} + 1} = \frac{e^{2x} - 1}{2e^{x}}$$ $$4e^{2x} = (e^{2x} + 1)(e^{2x} - 1)$$ $$4e^{2x} = e^{4x} - 1$$ $$e^{4x} - 4e^{2x} - 1 = 0$$ Let $$y = e^{2x}$$: $y^2 - 4y - 1 = 0$ $y = \frac{4 \pm \sqrt{(-4)^2 - 4(1)(-1)}}{2(1)}$ $= \frac{4 \pm 2\sqrt{5}}{2}$ $= 2 \pm \sqrt{5}$ Since $$y = e^{2x}$$: $e^{2x} = 2 + \sqrt{5}$ or $e^{2x} = 2 - \sqrt{5}$ When $$e^{2x} = 2 + \sqrt{5}$$ $2x = \ln(2 + \sqrt{5})$ $x = \frac{1}{2}\ln(2 + \sqrt{5})$ as required When $$e^{2x} = 2 - \sqrt{5}$$ $e^{2x} < 0$, which would be impossible so this gives no further solutions. # Solution Bank 3 a $f(x) \in \mathbb{R}$ (All real numbers) **b** $f(x) \geqslant 1$ $$c \quad \begin{array}{c} -1 < f(x) < 1 \\ |f(x)| < 1 \end{array}$$ **d** $f(x) = \operatorname{sech} x, x \in \mathbb{R}$ $$\operatorname{sech} x = \frac{1}{\cosh x}$$ When $$x = 0$$, sech $x = \frac{1}{1} = 1$ As $x \to \infty$, $\cosh x \to \infty$, so $\operatorname{sech} x \to 0$ As $x \to -\infty$, $\cosh x \to -\infty$, so $\operatorname{sech} x \to 0$ The *x*-axis is an asymptote to the curve. Therefore $f(x) = \operatorname{sech} x$, $x \in \mathbb{R}$ has the range: $$0 < \mathrm{f}(x) \le 1$$ e $f(x) = \operatorname{cosech} x, x \in \mathbb{R}, x \neq 0$ $$\operatorname{cosech} x = \frac{1}{\sinh x}$$ For positive x, as $x \to 0$, $\operatorname{cosech} x \to \infty$ For negative x, as $x \to 0$, $\operatorname{cosech} x \to -\infty$ As $$x \to \infty$$, $\sinh x \to \infty$, so $\operatorname{cosech} x \to 0$ As $x \to -\infty$, $\sinh x \to -\infty$, so $\operatorname{cosech} x \to 0$ The *x*-axis and *y*-axis are asymptotes to the curve. Therefore $f(x) = \operatorname{cosech} x, \ x \in \mathbb{R}, \ x \neq 0$ has the range: $$f(x) \in \mathbb{R}, x \neq 0$$ \mathbf{f} $f(x) = \coth x, x \in \mathbb{R}, x \neq 0$ $$\coth x = \frac{1}{\tanh x}$$ For positive x, as $x \to 0$, $\coth x \to \infty$ For negative x, as $x \to 0$, $\coth x \to -\infty$ As $x \to \infty$, $\tanh x \to 1$, so $\coth x \to 1$ As $x \to -\infty$, $\tanh x \to -1$, so $\coth x \to -1$ So the y-axis is an asymptote to the curve as are the lines y = -1 and y = 1 Therefore $f(x) = \coth x$, $x \in \mathbb{R}$, $x \neq 0$ has the range: $$f(x) < -1 \text{ or } f(x) > 1$$ Check the graph of each hyperbolic function to see which *y* values are possible. ## Solution Bank 4 a $$f(x) = 1 + \coth x, x \in \mathbb{R}, x \neq 0$$ $$\coth x = \frac{1}{\tanh x}$$ For positive x, as $x \to 0$, $\coth x \to \infty$, so $1 + \coth x \to \infty$ For negative x, as $x \to 0$, $\coth x \to -\infty$, so $1 + \coth x \to -\infty$ As $$x \to \infty$$, $\tanh x \to 1$, so $\coth x \to 1$, so $1 + \coth x \to 2$ As $x \to -\infty$, $\tanh x \to -1$, so $\coth x \to -1$, so $1 + \coth x \to 0$ ## **b** The curve has asymptotes at: $$x = 0$$, $y = 0$ and $y = 2$ 5 **a** $$y = 3\tanh x, x \in \mathbb{R}, x \neq 0$$ $$3\tanh x = \frac{3\sinh x}{\cosh x}$$ When $$x = 0$$, $3 \tanh x = \frac{0}{1} = 0$ When x is large and positive, $$3 \sinh x \approx \frac{3}{2} e^x$$ and $\cosh x \approx \frac{1}{2} e^x$, so $\tanh x \approx 3$ When x is large and negative, $$3 \sinh x \approx -\frac{3}{2} e^{-x}$$ and $\cosh x \approx -\frac{1}{2} e^{-x}$, so $\tanh x \approx -3$ As $$x \to \infty$$, $3 \tanh x \to 3$ As $$x \to -\infty$$, $3\tanh x \to -3$ #### **b** The curve has asymptotes at: $$y = -3$$ and $y = 3$ # Solution Bank #### Challenge $$y = \sinh x + \cosh x$$ $$= \frac{e^x - e^{-x}}{2} + \frac{e^x + e^{-x}}{2}$$ $$= e^x$$