Solution Bank

Exercise 1B

For $f(x) = \cosh x$, $f(2x) = \cosh 2x$, a horizontal sketch of scale factor $\frac{1}{2}$.

For $f(x) = \cosh x$, $2f(x) = 2 \cosh x$, a vertical stretch of scale factor 2.

2 a

Solution Bank

2 b The curves $y = \operatorname{sech} x$ and $y = \sinh x$ meet when:

$$\frac{2}{e^{x} + e^{-x}} = \frac{e^{x} - e^{-x}}{2}$$

$$\frac{2e^{x}}{e^{2x} + 1} = \frac{e^{2x} - 1}{2e^{x}}$$

$$4e^{2x} = (e^{2x} + 1)(e^{2x} - 1)$$

$$4e^{2x} = e^{4x} - 1$$

$$e^{4x} - 4e^{2x} - 1 = 0$$

Let
$$y = e^{2x}$$
:
 $y^2 - 4y - 1 = 0$
 $y = \frac{4 \pm \sqrt{(-4)^2 - 4(1)(-1)}}{2(1)}$
 $= \frac{4 \pm 2\sqrt{5}}{2}$
 $= 2 \pm \sqrt{5}$

Since
$$y = e^{2x}$$
:
 $e^{2x} = 2 + \sqrt{5}$ or $e^{2x} = 2 - \sqrt{5}$

When
$$e^{2x} = 2 + \sqrt{5}$$

 $2x = \ln(2 + \sqrt{5})$
 $x = \frac{1}{2}\ln(2 + \sqrt{5})$ as required

When
$$e^{2x} = 2 - \sqrt{5}$$

 $e^{2x} < 0$, which would be impossible so this gives no further solutions.

Solution Bank

3 a $f(x) \in \mathbb{R}$

(All real numbers)

b $f(x) \geqslant 1$

$$c \quad \begin{array}{c} -1 < f(x) < 1 \\ |f(x)| < 1 \end{array}$$

d $f(x) = \operatorname{sech} x, x \in \mathbb{R}$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

When
$$x = 0$$
, sech $x = \frac{1}{1} = 1$

As $x \to \infty$, $\cosh x \to \infty$, so $\operatorname{sech} x \to 0$

As $x \to -\infty$, $\cosh x \to -\infty$, so $\operatorname{sech} x \to 0$

The *x*-axis is an asymptote to the curve.

Therefore $f(x) = \operatorname{sech} x$, $x \in \mathbb{R}$ has the range:

$$0 < \mathrm{f}(x) \le 1$$

e $f(x) = \operatorname{cosech} x, x \in \mathbb{R}, x \neq 0$

$$\operatorname{cosech} x = \frac{1}{\sinh x}$$

For positive x, as $x \to 0$, $\operatorname{cosech} x \to \infty$

For negative x, as $x \to 0$, $\operatorname{cosech} x \to -\infty$

As
$$x \to \infty$$
, $\sinh x \to \infty$, so $\operatorname{cosech} x \to 0$

As $x \to -\infty$, $\sinh x \to -\infty$, so $\operatorname{cosech} x \to 0$

The *x*-axis and *y*-axis are asymptotes to the curve.

Therefore $f(x) = \operatorname{cosech} x, \ x \in \mathbb{R}, \ x \neq 0$ has the range:

$$f(x) \in \mathbb{R}, x \neq 0$$

 \mathbf{f} $f(x) = \coth x, x \in \mathbb{R}, x \neq 0$

$$\coth x = \frac{1}{\tanh x}$$

For positive x, as $x \to 0$, $\coth x \to \infty$

For negative x, as $x \to 0$, $\coth x \to -\infty$

As $x \to \infty$, $\tanh x \to 1$, so $\coth x \to 1$

As $x \to -\infty$, $\tanh x \to -1$, so $\coth x \to -1$

So the y-axis is an asymptote to the curve as are the lines y = -1 and y = 1

Therefore $f(x) = \coth x$, $x \in \mathbb{R}$, $x \neq 0$ has the range:

$$f(x) < -1 \text{ or } f(x) > 1$$

Check the graph of each hyperbolic function to see which *y* values are possible.

Solution Bank

4 a
$$f(x) = 1 + \coth x, x \in \mathbb{R}, x \neq 0$$

$$\coth x = \frac{1}{\tanh x}$$

For positive x, as $x \to 0$, $\coth x \to \infty$, so $1 + \coth x \to \infty$

For negative x, as $x \to 0$, $\coth x \to -\infty$, so $1 + \coth x \to -\infty$

As
$$x \to \infty$$
, $\tanh x \to 1$, so $\coth x \to 1$, so $1 + \coth x \to 2$

As $x \to -\infty$, $\tanh x \to -1$, so $\coth x \to -1$, so $1 + \coth x \to 0$

b The curve has asymptotes at:

$$x = 0$$
, $y = 0$ and $y = 2$

5 **a**
$$y = 3\tanh x, x \in \mathbb{R}, x \neq 0$$

$$3\tanh x = \frac{3\sinh x}{\cosh x}$$

When
$$x = 0$$
, $3 \tanh x = \frac{0}{1} = 0$

When x is large and positive,
$$3 \sinh x \approx \frac{3}{2} e^x$$
 and $\cosh x \approx \frac{1}{2} e^x$, so $\tanh x \approx 3$

When x is large and negative,
$$3 \sinh x \approx -\frac{3}{2} e^{-x}$$
 and $\cosh x \approx -\frac{1}{2} e^{-x}$, so $\tanh x \approx -3$

As
$$x \to \infty$$
, $3 \tanh x \to 3$

As
$$x \to -\infty$$
, $3\tanh x \to -3$

b The curve has asymptotes at:

$$y = -3$$
 and $y = 3$

Solution Bank

Challenge

$$y = \sinh x + \cosh x$$
$$= \frac{e^x - e^{-x}}{2} + \frac{e^x + e^{-x}}{2}$$
$$= e^x$$

